MARLBOROUGH ROAD ACADEMY

MATHEMATICS CALCULATION POLICY

This Calculation Policy supports the Maths No Problem Singapore Maths scheme that is used in Y1-6 and the EYFS White Rose scheme of work.

Progression within in each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

This policy has been designed to teach children using concrete, pictorial and abstract methods/representations. C-P-A.
Concrete representation - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representation - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation - a pupil is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$. It is important that conceptual understanding, supported using representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Document Status

Version	Date	Action
1	October 2019	First Written
2		
3		
4		

This Policy has been impact assessed to ensure that it does not have an adverse effect on race, gender or disability equality

Multiplication	
Identifying and making equal objects of groups.	Qilfen all expeiever epal jopet if injets They will mert an pactici pnotion elliy ictates inelveng 8
Using doubling when solving concrete and pictorial problems.	Double 2 boots $2+2=4$

Division

Sharing objects into equal groups practically and pictorially.
Hearing and being exposed to the language of sharing and halving. Practically exploring halving and seeing pictorial representations.

Addition			
Combining two parts to make a whole: part-part-whole model. Joining two groups and recounting all of the objects. With a focus on finding and learning number bonds for all numbers to 10 - number bond cards are to be used to develop recall alongside the Numbots app. Learn number bonds to 20 and demonstrate an understanding of related facts.			
		part 1	4 part
		$\begin{aligned} & 6+4=10 \\ & 4+6=10 \\ & 10-4=6 \\ & 10-6=4 \end{aligned}$	${ }^{10}$ 6^{10}
	c)	4) 80 a Le - -	

Bridging ten using ten frames, bar models, and number lines.
Children should start with the largest number and see how many more needed to make ten.

$6+6=12$

Make 9 in one and 3 in the other. Take one from the 3 to make the 9 into a ten... $10+2=12$

Subtraction

Multiplication	
Count in multiples of 2,5,and 10 from zero.	
	4 groups of $2=8$ $4 \times 2=8$
	$2 \times 4=8$
	$\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathrm{two}_{\mathrm{wo}}$ wwo^{2}

Year 2

Addition			
Use concrete objects and pictorial representations to add a 1 digit number to a 2 digit number. Use concrete and pictorial representations to add a multiple of $\mathbf{1 0}$ to a $\mathbf{2}$ digit number.		tens 2 $+\quad$	ones 5 3 8

| Skip count in multiples of2,3,5 and 10 from 0 . |
| :--- | :--- |

Recall and use division facts for the $\mathbf{2}, \mathbf{5}$ and 10 times
tables.
Solve division facts in context, using concrete objects, by
sharing.
Solve division problems, in context, using arrays.

Understand and use the inverse - this should be taught alongside both multiplication and division.

Put into groups of 5 .
There are \square groups

Make a family of multiplication and division facts.

$2 \times 10=20$ \qquad $20 \div 10=$

$10 \times 2=20$
$20 \div 2=$

Year 3

and

Subtraction

Subtract numbers up to three digits from a 3-digit
number. It is very important that children use Dienes
alongside a place value chart to support understanding.
Only when secure with this, should exchanging be
introduced.

| Use then |
| :--- | :--- |

Multiplication

Children to recall the following times tables:
$2,5,10,3,4,8$.

$$
\begin{aligned}
& 3 \times 4= \\
& 3 \times 8= \\
& 5 \times 4= \\
& 5 \times 8= \\
& 2 \times 8= \\
& 3 \times 8= \\
& 2 \times 8= \\
& 5 \times 8= \\
& 7 \times 8=
\end{aligned}
$$

Multiply a 2 digit number by a one digit number.

In Focus

There are 23 children in a class.
How many children are there in 2 classes?

Let's Learn

Step 1 Multiply the ones by 2.

3 ones $\times 2=6$ ones

Step 2 Multiply the tens by 2.
2 tens $\times 2=4$ tens

Step 3 Add the products.
$6+40=46$
$23 \times 2=46$

There are 46 children in the 2 classes.

Multiply a 2-digit number by a two-digit number, including regrouping.

In Focus

There are 18 blue crayons on the table. There are twice as many green crayons as blue crayons on another table.
(a) How many green crayons are there?
(b) How many crayons are there altogether?

Let's Learn

(1) (a)

There are 36 green crayons.

(b)

Division

Divide 2-digit numbers by one-digit numbers.

Each person gets 34 sweets.

Divide by regrouping.

Let's Learn

To find the number of ice creams in each box, divide 52 by 4.
$52 \div 4=$
Step 1 Split 52 into 40 and 12.

Step 3 Regroup 1 ten Into 10 ones.

$$
[-0]\left[\begin{array}{l}
\text { eeveeve } \\
\text { evevev }
\end{array}\right]
$$

Step 4 Divide the ones by 4.

$52 \div 4=10+3=13$
There are 13 ice creams in each box.

Let's Learn

Addition

Adding numbers with up to 4 digits, including renaming.

In Focus

Charles uses digit cards to make two numbers.

Step 4 Add the thousands.
4 thousands +1 thousand +1 thousand $=6$ thousands

Sub	
Subtract numbers with up to four digit, including renaming. Use place value charts and counters to support, before moving to the abstract.	In Focus I have $£ 5280$ with me. After Ruby spent $£ 3169$, how much was left? Let's Learn There aren't enough ones.

Subtract fractions with the same denominator.

Year 5

Addition

Adding numbers with more than 4 digits, using formal written methods, including those with decimals.

Use place value charts and counters to support, before moving to the abstract.
\qquad
add the tenths

Together they cost $£ 6.65$.

Subtraction

Subtract numbers with at least 4 digits using formal written methods, including decimal numbers.

(2) picks $5-\omega_{0}$ and ass and finds the difference.

Subtract fractions with the same denominator and denominators that are multiples of the same number

In Focus

How much of the pizza is left over?

Let's Learn

(1)

(2) Subtract $\frac{3}{8}$ from 2 .

$2-\frac{3}{8}=1+$

(2) $\frac{9}{10}-\frac{2}{5}=$

(1) $2 \frac{1}{2}-1 \frac{1}{4}=1 \frac{1}{4}$

Multiplication

Multiply proper fractions and mixed numbers by whole numbers.	The distance between Clty B and City C is 4 times the distance between Clity A and Clity B. How can we work out the distance between City A and City C? Let's Learn 1 Lulu bought eight $\frac{2}{3}$ I bottles of frult punch. How much frult punch did she buy? She also bought 8 ples for a party. $\frac{2}{3}$ of them were eaten. How many ples were eaten? Let's Learn 1 \square $\begin{aligned} 8 \times \frac{2}{3} & =8 \times 2 \text { thirds } \\ & =16 \text { thirds } \\ & =\frac{16}{3} \end{aligned}$ She bought $5 \frac{1}{3}$ litres of fruit punch. $\text { (1) } \begin{aligned} 2 \frac{1}{2} \times 3 & =6+\frac{3}{2} \\ & =6+1 \frac{1}{2} \\ & =7 \frac{1}{2} \end{aligned}$

Division

Abstract

Divide numbers up to 4 digits by a one-digit number using formal written methods and interpret remainders appropriately for the context

$3 \longdiv { 4 2 } \longrightarrow 3 \longdiv { 3 \frac { 1 2 } { 2 } }$
(a) $98 \div 7=$ 14
$7 \longdiv { 9 8 }$

7 | 14 |
| :--- |
| 728 |
| 988 |

(b) $342 \div 6=57$
$6 \longdiv { 3 4 2 }$

$5 \longdiv { 3 7 ^ { 2 } 6 }$ remalnder 1
(2) 二's story

2528 ml of juice is put into 8 containers so that each container holds the same volume. What is the volume of juice in each container?
$2528 \mathrm{ml} \div 8=316$

Solve multip- step / multi -operational problems

Abstract

Solve addition and subtraction, multiplication and division multi-step problems in contexts, deciding which

In Focus

baked 6 batches of cupcakes,
Each batch was made up of 8 trays of waselh.
Sam packed the cupcakes into boxes of 4 .
Find the number of boxes he got.
What if Sam packed the cupcakes into boxes of 7 ?

Let's Learn

1) Understand the problem.

논

Percentages

Abstract

Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal

```In Focus```
 In Focus

Out of 20 throws, I scored 13.
Out of 25 throws, I scored 15.

II

Let's Learn

(1) 2 's method

What is wrong with - 's method?
When does Z 's method work?
(2) As method

(3) 's method

Addition

Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions.

Add using negative numbers.

Add increasingly larger numbers using formal column addition, including decimals.

Subtraction

Subtract using negative numbers.

Subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.
$3-7=-4$

In Focus


```
What is left if #
What is left if }\mp@subsup{}{}{\rho}\mathrm{ tokes }\frac{3}{4}\mathrm{ of }\square\square\square\mathrm{ ?
```


Let's Learn

(1) $1 \frac{1}{3}-\frac{1}{4}=$

(2) $1 \frac{1}{3}-\frac{3}{4}=$

Method 1

Method 2

$$
\begin{aligned}
1 \frac{1}{3}-\frac{3}{4} & =1 \frac{4}{12}-\frac{9}{12} \\
& =\frac{16}{12}-\frac{9}{12} \\
& =\frac{7}{12}
\end{aligned}
$$

Subtract increasingly large numbers using formal written methods, including decimals.

Multiplication

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long $12 \times 568=6816$ multiplication.

$$
568
$$

$\times \quad 12$
$1136 \longrightarrow 568 \times 2$
$\begin{array}{r}5680 \\ \hline 6816\end{array} 568 \times 10$

Division

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for
$96 \begin{array}{r}50 \\ -\quad 40 \\ -\quad 80 \\ \hline 20\end{array} \longrightarrow 5 \times 96=480$ the context.

Problem solving with all four operations

solve problems involving addition, subtraction, multiplication and division
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

In Focus

What is the greatest number of mangoes that can be bought with f 50 ?

Let's Learn

(1) How many mangoes can be bought with $£ 50$?

Method 2
$£ 50+£ 13=3$ remainder $£ 11$
$3 \times 8=24$

24 mangoes

Percentages

Calculate percentages of quantities and numbers.
2. 40% of $65=26$

10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
65									

$10 \% \longrightarrow 65+10=6.5$
$40 \% \longrightarrow 4 \times 6.5=26$

